Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

(Nitrato- κO)(1,10-phenanthroline- $\kappa^2 N$,N')-(picolinato N-oxide- $\kappa^2 O$,O')copper(II)

Lei Gou,^a Xiong-Wei Qu,^b Bo Zheng,^a Dao-Yong Wang^a and Huai-Ming Hu^a*

^aDepartment of Chemistry, Northwest University, Xi'an 710069, People's Republic of China, and ^bInstitute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China

Correspondence e-mail: chemhu1@nwu.edu.cn

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(\text{C-C}) = 0.003 \text{ Å}$ R factor = 0.034 wR factor = 0.079Data-to-parameter ratio = 14.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The coordination environment of copper(II) in the title compound, $[Cu(C_6H_4NO_3)(NO_3)(C_{12}H_8N_2)]$, is square pyramidal; the basal plane comprises the two N atoms of 1,10-phenanthroline and the two O atoms of picolinate *N*-oxide, with the apical position occupied by a nitrate O atom.

Received 18 January 2005 Accepted 24 January 2005 Online 5 February 2005

Comment

Picolinic acid N-oxide has a polar $N \rightarrow O$ group that provides a strongly basic O-atom site for coordination. Only a few complexes of this ligand have been crystallographically authenticated. In the binuclear compound La(6-mepic-NO)₆·6H₂O, two La^{III} atoms are bridged by two picolinate Noxide groups (Yan et al., 1995). In the ErIII-NaI mixed-metal coordination polymer, the main feature is a polymeric chain of two zigzag chains (Mao et al., 1998). The copper(II) nitrate derivative of the acid, (I), is a five-coordinate compound as the phenanthroline (phen) adduct. The Cu^{II} atom is coordinated by the two N atoms of a phen ligand and the two O atoms of a picolinate N-oxide anion, these atoms forming the basal plane; one O atom of the nitrate group occupies the apical position. The distances involving the Cu atom are comparable with those found in, for example, [Cu(phen)(ox)(H₂O)]·H₂O (Chen et al., 2001) and [Cu(phen)(gly)(Cl)]·H₂O (Solans et al., 1988). The Cu-O_{nitrate} bond distance is significantly longer than the other Cu-O bond distances, since the O atom of the nitrate occupies the apical position. Both the heterocycle and the anion are planar. The Cu^{II} atom lies out of the basal plane by 0.1456 (5) Å in the direction of atom O4.

Experimental

To a solution of Cu(NO₃)₂·3H₂O (242 mg, 1 mmol) and 1,10-phenanthroline (180 mg, 1 mmol) in ethanol (20 ml) was added a solution of picolinic acid *N*-oxide (139 mg, 1 mmol) in tetrahydro-

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

furan (10 ml). The resulting solution was stirred for 4 h at room temperature. Crystals of (I) suitable for X-ray analysis were obtained after several days. Analysis found: C 48.56, H 2.57, N 12.86%; calculated for $C_{18}H_{12}CuN_4O_6$: C 48.71, H 2.73, N 12.62%.

Crystal data

$[Cu(C_6H_4NO_3)(NO_3)(C_{12}H_8N_2)]$	$D_x = 1.797 \text{ Mg m}^{-3}$
$M_r = 443.86$	$Mo K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 6799
a = 9.2861 (11) A	reflections
b = 9.5829 (12) Å	$\theta = 3.1-27.4^{\circ}$
c = 18.438 (3) Å	$\mu = 1.38 \text{ mm}^{-1}$
$\beta = 90.750 (4)^{\circ}$	T = 298 (2) K
$V = 1640.7 (4) \text{ Å}^3$	Block, blue
Z = 4	$0.38 \times 0.24 \times 0.16 \text{ mm}$

Data collection

Rigaku R-AXIS RAPID IP	3713 independent reflections
diffractometer	2699 reflections with $I > 2\sigma(I)$
Oscillation scans	$R_{\rm int} = 0.033$
Absorption correction: multi-scan	$\theta_{ m max} = 27.4^{\circ}$
(ABSCOR; Higashi, 1995)	$h = -11 \rightarrow 12$
$T_{\min} = 0.678, T_{\max} = 0.802$	$k = -12 \rightarrow 12$
6799 measured reflections	$l = -23 \rightarrow 23$

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.034$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0434P)^{2}]$
$wR(F^2) = 0.079$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.91	$(\Delta/\sigma)_{\text{max}} = 0.001$
3713 reflections	$\Delta \rho_{\text{max}} = 0.39 \text{ e Å}^{-3}$
262 parameters	$\Delta \rho_{\min} = -0.47 \text{ e Å}^{-3}$

 Table 1

 Selected geometric parameters (\mathring{A} , °).

Cu1-O1	1.8962 (16)	Cu1-N2	2.0113 (19)
Cu1-O2	1.9018 (16)	Cu1-N3	2.0090 (19)
Cu1-O4	2.2839 (16)		, ,
O1-Cu1-O2	93.78 (7)	O2-Cu1-N2	93.47 (7)
O1-Cu1-O4	104.56 (7)	O2-Cu1-N3	170.52 (7)
O1-Cu1-N2	165.37 (7)	O4-Cu1-N2	87.63 (7)
O1-Cu1-N3	88.42 (7)	O4-Cu1-N3	94.73 (7)
O2-Cu1-O4	93.64 (7)	N2-Cu1-N3	82.45 (7)

H atoms were placed at calculated positions and refined using a riding model, with C—H distances in the range 0.93–0.96 Å and with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm ea}({\rm C})$.

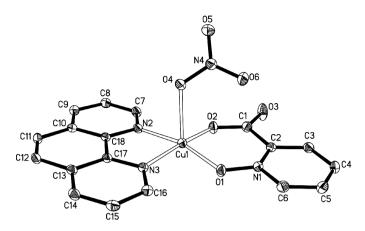


Figure 1
The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted.

Data collection: *RAPID-AUTO* (Rigaku, 2001); cell refinement: *RAPID-AUTO*; data reduction: *RAPID-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* (Siemens, 1994); software used to prepare material for publication: *SHELXTL* (Siemens, 1995).

References

Chen, X. F., Cheng, P., Liu, X., Zhao, B., Liao, D. Z., Yan, S. P. & Jiang, Z. H. (2001). Inorg. Chem. 40, 2652–2659.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Mao, J. G., Zhang, H. J., Ni, J. Z. & Mak, T. C. W. (1998). J. Chem. Crystallogr. 28, 413–418.

Rigaku (2001). RAPID-AUTO.Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Siemens (1995). SHELXTL. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Solans, X., Ruiz-Ramirez, L., Martinez, A., Gasque, L. & Brianso, J. L. (1988). Acta Cryst. C44, 628–631.

Yan, L., Liu, J. M., Wang, X., Yang, R. D. & Song, F. L. (1995). Polyhedron, 14, 3543–3548.